Exam Complex Analysis, 28 January 2014

The exam consists of 6 problems. Please write clearly and give a clear explanation of your answers. The maximal amount of points for each problem can be found below.

- 1. Let w = f(z) = u(x, y) + iv(x, y) be analytic on the domain D. Assume that f(z) maps D onto a portion of a line in the w-plane, i.e., there exist real numbers a, b and c, with a and b not both equal to 0, such that au(x, y) + bv(x, y) = c for all $z = x + iy \in D$.
 - a. Show that $a\frac{\partial u}{\partial x}(x,y) + b\frac{\partial v}{\partial x}(x,y) = 0$ and $a\frac{\partial u}{\partial y}(x,y) + b\frac{\partial v}{\partial y}(x,y) = 0$ on D.
 - **b.** Show that the partial derivatives of u(x,y) and v(x,y) are 0 on D.
 - **c.** Show that f(z) is constant on D.
- **2.** Consider the function $f(z) = \sin z$ on \mathbb{C} .
 - a. Show that the zeros of f are real, and determine all zeros.
 - b. Write f(z) in the form u(x, y) + iv(x, y).
 - c. Use the Cauchy-Riemann equations to prove that f(z) is an entire function.
 - d. Is f(z) bounded on \mathbb{C} ? Explain your answer.
- 3. Let f(z) be analytic on and inside the simple closed contour Γ .
 - a. Let $z_0 \in \mathbb{C}$ be a point that does not lie inside or on Γ . Determine the integral

$$\int_{\Gamma} \frac{f(z)}{z - z_0} dz.$$

b. Let g(z) be analytic on and inside Γ , such that f(z) = g(z) for all z on Γ . Prove that then f(z) = g(z) for all z inside Γ .

- 4. Consider the function $g(z) = \frac{e^{-z}}{(z+1)^2}$.
 - a. Find the Laurent series of g(z) in |z+1| > 0.
 - **b.** Classify the singularity of g(z)
 - c. Let Γ be the circle |z|=2 traversed once in positive sense. Compute $\int_{\Gamma}g(z)dz$.
- 5. Consider the functie f(z) given by $f(z) = z \cos(\frac{1}{2z})$.
 - **a.** Find the Laurent series of f(z) in |z| > 0.
 - b. Classify the singularity of f(z)
 - **d.** Compute the residue of f(z) in its singularity
- **6.** Rouché's theorem is a very powerful result to determine information about the location of zeros of analytic functions.
 - a. Give a precise formulation of Rouché's theorem.
 - b. Determine the number of roots of the equation $6z^4+z^3-2z^2+z-\frac{7}{4}$ in the disc |z|<1
 - **c.** Show that all roots lie in the annulus $\frac{1}{2} \le |z| < 1$.

Points:

Problem 1: 16 (4 + 8 + 4)

Problem 2: 16 (4 + 4 + 4 + 4)

Problem 3: 16(8 + 8)

Problem 4: 16(8+4+4)

Problem 5: 16 (8 + 4 + 4)

Problem 6: 16(4+6+6)

10 points for free